Commit 1193e9d5 by zlj

no update when traiing is false

parent aedbd706
......@@ -6,10 +6,10 @@ addr="192.168.1.107"
partition_params=("ours")
#"metis" "ldg" "random")
#("ours" "metis" "ldg" "random")
partitions="16"
partitions="4"
node_per="4"
nnodes="4"
node_rank="1"
nnodes="1"
node_rank="0"
probability_params=("0.1")
sample_type_params=("boundery_recent_decay")
#sample_type_params=("recent" "boundery_recent_decay") #"boundery_recent_uniform")
......@@ -19,7 +19,7 @@ memory_type=("historical")
#memory_type=("local" "all_update" "historical" "all_reduce")
shared_memory_ssim=("0.3")
#data_param=("WIKI" "REDDIT" "LASTFM" "WikiTalk")
data_param=("LASTFM" "WikiTalk")
data_param=("WikiTalk")
# "StackOverflow" "GDELT")
#"GDELT")
#data_param=("WIKI" "REDDIT" "LASTFM" "DGraphFin" "WikiTalk" "StackOverflow")
......@@ -32,71 +32,71 @@ data_param=("LASTFM" "WikiTalk")
#seed=(( RANDOM % 1000000 + 1 ))
mkdir -p all_"$seed"
# for data in "${data_param[@]}"; do
# model="TGN_large"
# if [ "$data" = "WIKI" ] || [ "$data" = "REDDIT" ] || [ "$data" = "LASTFM" ]; then
# model="TGN"
# fi
# #model="APAN"
# mkdir all_"$seed"/"$data"
# mkdir all_"$seed"/"$data"/"$model"
# mkdir all_"$seed"/"$data"/"$model"/comm
# #torchrun --nnodes "$nnodes" --node_rank 0 --nproc-per-node 1 --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition ours --memory_type local --sample_type recent --topk 0 --seed "$seed" > all_"$seed"/"$data"/"$model"/1.out &
# wait
# for partition in "${partition_params[@]}"; do
# for sample in "${sample_type_params[@]}"; do
# if [ "$sample" = "recent" ]; then
# for mem in "${memory_type[@]}"; do
# if [ "$mem" = "historical" ]; then
# for ssim in "${shared_memory_ssim[@]}"; do
# if [ "$partition" = "ours" ]; then
# torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --memory_type "$mem" --shared_memory_ssim "$ssim" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$ssim"-"$sample".out &
# wait
# fi
# done
# elif [ "$mem" = "all_reduce" ]; then
# if [ "$partition" = "ours" ]; then
# torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample".out &
# wait
# fi
# else
# torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0 --sample_type "$sample" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-"$partition"-0-"$mem"-"$sample".out &
# wait
# #if [ "$partition" = "ours" ] && [ "$mem" != "all_local" ]; then
# # torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample".out &
# wait
# #fi
# fi
# done
# else
# for pro in "${probability_params[@]}"; do
# for mem in "${memory_type[@]}"; do
# if [ "$mem" = "historical" ]; then
# for ssim in "${shared_memory_ssim[@]}"; do
# if [ "$partition" = "ours" ]; then
# torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --shared_memory_ssim "$ssim" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$ssim"-"$sample"-"$pro".out &
# wait
# fi
# done
# elif [ "$mem" = "all_reduce" ]; then
# if [ "$partition" = "ours"]; then
# torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample"-"$pro".out&
# wait
# fi
# else
# torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-"$partition"-0-"$mem"-"$sample"-"$pro".out &
# wait
# if [ "$partition" = "ours" ] && [ "$mem" != "all_local" ]; then
# torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample"-"$pro".out &
# wait
# fi
# fi
# done
# done
# fi
# done
# done
# done
for data in "${data_param[@]}"; do
model="JODIE_large"
if [ "$data" = "WIKI" ] || [ "$data" = "REDDIT" ] || [ "$data" = "LASTFM" ]; then
model="JODIE"
fi
#model="APAN"
mkdir all_"$seed"/"$data"
mkdir all_"$seed"/"$data"/"$model"
mkdir all_"$seed"/"$data"/"$model"/comm
#torchrun --nnodes "$nnodes" --node_rank 0 --nproc-per-node 1 --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition ours --memory_type local --sample_type recent --topk 0 --seed "$seed" > all_"$seed"/"$data"/"$model"/1.out &
wait
for partition in "${partition_params[@]}"; do
for sample in "${sample_type_params[@]}"; do
if [ "$sample" = "recent" ]; then
for mem in "${memory_type[@]}"; do
if [ "$mem" = "historical" ]; then
for ssim in "${shared_memory_ssim[@]}"; do
if [ "$partition" = "ours" ]; then
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --memory_type "$mem" --shared_memory_ssim "$ssim" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$ssim"-"$sample".out &
wait
fi
done
elif [ "$mem" = "all_reduce" ]; then
if [ "$partition" = "ours" ]; then
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample".out &
wait
fi
else
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0 --sample_type "$sample" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-"$partition"-0-"$mem"-"$sample".out &
wait
#if [ "$partition" = "ours" ] && [ "$mem" != "all_local" ]; then
# torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample".out &
wait
#fi
fi
done
else
for pro in "${probability_params[@]}"; do
for mem in "${memory_type[@]}"; do
if [ "$mem" = "historical" ]; then
for ssim in "${shared_memory_ssim[@]}"; do
if [ "$partition" = "ours" ]; then
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --shared_memory_ssim "$ssim" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$ssim"-"$sample"-"$pro".out &
wait
fi
done
elif [ "$mem" = "all_reduce" ]; then
if [ "$partition" = "ours"]; then
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample"-"$pro".out&
wait
fi
else
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-"$partition"-0-"$mem"-"$sample"-"$pro".out &
wait
if [ "$partition" = "ours" ] && [ "$mem" != "all_local" ]; then
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample"-"$pro".out &
wait
fi
fi
done
done
fi
done
done
done
for data in "${data_param[@]}"; do
model="JODIE_large"
......@@ -117,20 +117,20 @@ for data in "${data_param[@]}"; do
if [ "$mem" = "historical" ]; then
for ssim in "${shared_memory_ssim[@]}"; do
if [ "$partition" = "ours" ]; then
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --memory_type "$mem" --shared_memory_ssim "$ssim" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$ssim"-"$sample".out &
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --memory_type "$mem" --shared_memory_ssim "$ssim" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$ssim"-"$sample".out &
wait
fi
done
elif [ "$mem" = "all_reduce" ]; then
if [ "$partition" = "ours" ]; then
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample".out &
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample".out &
wait
fi
else
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0 --sample_type "$sample" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-"$partition"-0-"$mem"-"$sample".out &
wait
# if [ "$partition" = "ours" ] && [ "$mem" != "all_local" ]; then
# torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample".out &
# torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample".out &
# wait
# fi
fi
......@@ -141,20 +141,20 @@ for data in "${data_param[@]}"; do
if [ "$mem" = "historical" ]; then
for ssim in "${shared_memory_ssim[@]}"; do
if [ "$partition" = "ours" ]; then
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --shared_memory_ssim "$ssim" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$ssim"-"$sample"-"$pro".out &
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --shared_memory_ssim "$ssim" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$ssim"-"$sample"-"$pro".out &
wait
fi
done
elif [ "$mem" = "all_reduce" ]; then
if [ "$partition" = "ours"]; then
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample"-"$pro".out&
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample"-"$pro".out&
wait
fi
else
#torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-"$partition"-0-"$mem"-"$sample"-"$pro".out &
wait
if [ "$partition" = "ours" ] && [ "$mem" != "all_local" ]; then
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample"-"$pro".out &
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample"-"$pro".out &
wait
fi
fi
......@@ -184,20 +184,20 @@ for data in "${data_param[@]}"; do
if [ "$mem" = "historical" ]; then
for ssim in "${shared_memory_ssim[@]}"; do
if [ "$partition" = "ours" ]; then
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --memory_type "$mem" --shared_memory_ssim "$ssim" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$ssim"-"$sample".out &
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --memory_type "$mem" --shared_memory_ssim "$ssim" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$ssim"-"$sample".out &
wait
fi
done
elif [ "$mem" = "all_reduce" ]; then
if [ "$partition" = "ours" ]; then
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample".out &
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample".out &
wait
fi
else
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0 --sample_type "$sample" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-"$partition"-0-"$mem"-"$sample".out &
wait
# if [ "$partition" = "ours" ] && [ "$mem" != "all_local" ]; then
# torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample".out &
# torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample".out &
# wait
# fi
fi
......@@ -208,20 +208,20 @@ for data in "${data_param[@]}"; do
if [ "$mem" = "historical" ]; then
for ssim in "${shared_memory_ssim[@]}"; do
if [ "$partition" = "ours" ]; then
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --shared_memory_ssim "$ssim" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$ssim"-"$sample"-"$pro".out &
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --shared_memory_ssim "$ssim" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$ssim"-"$sample"-"$pro".out &
wait
fi
done
elif [ "$mem" = "all_reduce" ]; then
if [ "$partition" = "ours"]; then
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample"-"$pro".out&
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample"-"$pro".out&
wait
fi
else
#torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-"$partition"-0-"$mem"-"$sample"-"$pro".out &
wait
if [ "$partition" = "ours" ] && [ "$mem" != "all_local" ]; then
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.1 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample"-"$pro".out &
torchrun --nnodes "$nnodes" --node_rank "$node_rank" --nproc-per-node "$node_per" --master-addr "$addr" --master-port 9445 train_boundery.py --dataname "$data" --mode "$model" --partition "$partition" --topk 0.02 --sample_type "$sample" --probability "$pro" --memory_type "$mem" --seed "$seed" > all_"$seed"/"$data"/"$model"/"$partitions"-ours_shared-0.01-"$mem"-"$sample"-"$pro".out &
wait
fi
fi
......
......@@ -471,9 +471,6 @@ def main():
for roots,mfgs,metadata in trainloader:
end = time_count.elapsed_event(start)
total += end
print('batch {} time {} {}\n'.format(b_cnt,end,total))
b_cnt = b_cnt + 1
t1 = time_count.start_gpu()
......@@ -511,7 +508,9 @@ def main():
ada_param.update_gnn_aggregate_time(ada_param.last_start_event_gnn_aggregate)
edge_feat[1].wait()
node_feat0[1].wait()
if ada_param is not None:
ada_param.update_fetch_time(ada_param.last_start_event_fetch)
ada_param.update_parameter()
loss.backward()
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment