Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
B
BTS-MTGNN
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
zhlj
BTS-MTGNN
Commits
a2b8c19a
Commit
a2b8c19a
authored
Feb 19, 2025
by
zlj
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fix some problem
parent
e0e37a11
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
39 additions
and
9 deletions
+39
-9
analysis.md
+30
-0
examples/test_all.sh
+5
-5
starrygl/module/utils.py
+1
-1
starrygl/sample/data_loader.py
+3
-3
No files found.
analysis.md
0 → 100644
View file @
a2b8c19a
对于热点数据的为k的通信比例是
假设$y$作为跨分区访问的比例
$N_{root}^k
\c
dot
\e
ta_1
\c
dot m
\c
dot d_{mem} + (3d_{mem} + d_{e} + d_{n})
\c
dot
\t
heta
\c
dot y
\c
dot N_{nei} $
选择k带来的y可以先暂时估算为
$((|E|-|E^k|)
*y+|E^k|*
\f
rac{m-1}{m})/|E|$
化简一下远程访问的比例大概是$(1-|E^k|/|E|)
*y + |E^k|/E*
\f
rac{m-1}{m}$
那么通信量可以表示为$|E^k|
\c
dot
\e
ta_1
\c
dot m
\c
dot d_{mem} + d_{fetch}
\c
dot N_{nei}
\c
dot
\t
heta
\c
dot ((1-|E^k|/|E|)+ |E^k|/E
*
\f
rac{m-1}{m})$
化简后可以表示为
$|E^k|(
\e
ta_1
\c
dot m
\c
dot d_{mem} - d_{fetch} N_{nei}
\c
dot
\t
heta/|E|) + d_{fetch}
\c
dot N_{nei}
\c
dot
\t
heta$
那么$
\e
ta_1 < d_{fetch} N_{nei}
\c
dot
\t
heta/|E|/({d_{mem}
\c
dot m}) $带来优势
$
\e
ta_1 <
\f
rac{3}{m}N_{nei}/|E|$则能够减少通信的开销,实验验证当$
\a
lpha$大于0.7的时候,$
\e
ta_1$小于0.1
从精度角度考虑,采用k共享之后,能够采样得到的本地特征的增加数量
对于热点数据,访问外部分区的数量
$|E_k|
*
\f
rac{(|E|-|E_k|)}{|E|}
\f
rac{m-1}{m}$
对于非热点数据,访问外部分区的数量
$(|E|-|E_k|)
*
\f
rac{|E|-|E_k|}{E}y$
examples/test_all.sh
View file @
a2b8c19a
...
@@ -6,9 +6,9 @@ addr="192.168.1.107"
...
@@ -6,9 +6,9 @@ addr="192.168.1.107"
partition_params
=(
"ours"
)
partition_params
=(
"ours"
)
#"metis" "ldg" "random")
#"metis" "ldg" "random")
#("ours" "metis" "ldg" "random")
#("ours" "metis" "ldg" "random")
partitions
=
"
4
"
partitions
=
"
8
"
node_per
=
"4"
node_per
=
"4"
nnodes
=
"
1
"
nnodes
=
"
2
"
node_rank
=
"0"
node_rank
=
"0"
probability_params
=(
"0.1"
)
probability_params
=(
"0.1"
)
sample_type_params
=(
"boundery_recent_decay"
)
sample_type_params
=(
"boundery_recent_decay"
)
...
@@ -19,7 +19,7 @@ memory_type=("historical")
...
@@ -19,7 +19,7 @@ memory_type=("historical")
#memory_type=("local" "all_update" "historical" "all_reduce")
#memory_type=("local" "all_update" "historical" "all_reduce")
shared_memory_ssim
=(
"0.3"
)
shared_memory_ssim
=(
"0.3"
)
#data_param=("WIKI" "REDDIT" "LASTFM" "WikiTalk")
#data_param=("WIKI" "REDDIT" "LASTFM" "WikiTalk")
data_param
=(
"
WikiTalk"
)
data_param
=(
"
LASTFM"
"WikiTalk"
"StackOverflow"
)
#"GDELT")
#"GDELT")
#data_param=("WIKI" "REDDIT" "LASTFM" "DGraphFin" "WikiTalk" "StackOverflow")
#data_param=("WIKI" "REDDIT" "LASTFM" "DGraphFin" "WikiTalk" "StackOverflow")
#data_param=("WIKI" "REDDIT" "LASTFM" "WikiTalk" "StackOverflow")
#data_param=("WIKI" "REDDIT" "LASTFM" "WikiTalk" "StackOverflow")
...
@@ -32,9 +32,9 @@ data_param=("WikiTalk")
...
@@ -32,9 +32,9 @@ data_param=("WikiTalk")
#seed=(( RANDOM % 1000000 + 1 ))
#seed=(( RANDOM % 1000000 + 1 ))
mkdir
-p
all_
"
$seed
"
mkdir
-p
all_
"
$seed
"
for
data
in
"
${
data_param
[@]
}
"
;
do
for
data
in
"
${
data_param
[@]
}
"
;
do
model
=
"
JODIE
_large"
model
=
"
TGN
_large"
if
[
"
$data
"
=
"WIKI"
]
||
[
"
$data
"
=
"REDDIT"
]
||
[
"
$data
"
=
"LASTFM"
]
;
then
if
[
"
$data
"
=
"WIKI"
]
||
[
"
$data
"
=
"REDDIT"
]
||
[
"
$data
"
=
"LASTFM"
]
;
then
model
=
"
JODIE
"
model
=
"
TGN
"
fi
fi
#model="APAN"
#model="APAN"
mkdir all_
"
$seed
"
/
"
$data
"
mkdir all_
"
$seed
"
/
"
$data
"
...
...
starrygl/module/utils.py
View file @
a2b8c19a
...
@@ -137,7 +137,7 @@ class AdaParameter:
...
@@ -137,7 +137,7 @@ class AdaParameter:
self
.
alpha
=
max
(
min
(
self
.
alpha
,
self
.
max_alpha
),
self
.
min_alpha
)
self
.
alpha
=
max
(
min
(
self
.
alpha
,
self
.
max_alpha
),
self
.
min_alpha
)
print
(
'gnn aggregate {} fetch {} memory sync {} memory update {}'
.
format
(
average_gnn_aggregate
,
average_fetch
,
average_memory_sync_time
,
average_memory_update_time
))
print
(
'gnn aggregate {} fetch {} memory sync {} memory update {}'
.
format
(
average_gnn_aggregate
,
average_fetch
,
average_memory_sync_time
,
average_memory_update_time
))
print
(
'beta is {} alpha is {}
\n
'
.
format
(
self
.
beta
,
self
.
alpha
))
print
(
'beta is {} alpha is {}
\n
'
.
format
(
self
.
beta
,
self
.
alpha
))
self
.
reset_time
()
#
self.reset_time()
#log(2-a1 ) = log(2-a2) * t1/t2 * (1 + wait_threshold)
#log(2-a1 ) = log(2-a2) * t1/t2 * (1 + wait_threshold)
#2-a1 = 2-a2 ^(t1/t2 * (1 + wait_threshold))
#2-a1 = 2-a2 ^(t1/t2 * (1 + wait_threshold))
#a1 = 2 - 2-a2 ^(t1/t2 * (1 + wait_threshold))
#a1 = 2 - 2-a2 ^(t1/t2 * (1 + wait_threshold))
...
...
starrygl/sample/data_loader.py
View file @
a2b8c19a
...
@@ -224,10 +224,10 @@ class DistributedDataLoader:
...
@@ -224,10 +224,10 @@ class DistributedDataLoader:
next_data
=
self
.
input_dataset
[
torch
.
tensor
([],
device
=
self
.
device
,
dtype
=
torch
.
long
)]
next_data
=
self
.
input_dataset
[
torch
.
tensor
([],
device
=
self
.
device
,
dtype
=
torch
.
long
)]
else
:
else
:
next_data
=
self
.
input_dataset
[
self
.
batch_pos_l
[
self
.
submitted
]:
self
.
batch_pos_r
[
self
.
submitted
]
+
1
]
next_data
=
self
.
input_dataset
[
self
.
batch_pos_l
[
self
.
submitted
]:
self
.
batch_pos_r
[
self
.
submitted
]
+
1
]
if
self
.
mode
==
'train'
and
self
.
probability
<
1
:
if
self
.
mode
==
'train'
and
self
.
ada_param
.
beta
<
1
:
mask
=
((
DistIndex
(
self
.
graph
.
nids_mapper
[
next_data
.
edges
[
0
,:]
.
to
(
'cpu'
)])
.
part
==
dist
.
get_rank
())
&
(
DistIndex
(
self
.
graph
.
nids_mapper
[
next_data
.
edges
[
1
,:]
.
to
(
'cpu'
)])
.
part
==
dist
.
get_rank
()))
mask
=
((
DistIndex
(
self
.
graph
.
nids_mapper
[
next_data
.
edges
[
0
,:]
.
to
(
'cpu'
)])
.
part
==
dist
.
get_rank
())
&
(
DistIndex
(
self
.
graph
.
nids_mapper
[
next_data
.
edges
[
1
,:]
.
to
(
'cpu'
)])
.
part
==
dist
.
get_rank
()))
if
self
.
probability
>
0
:
if
self
.
ada_param
.
beta
>
0
:
mask
[
~
mask
]
=
(
torch
.
rand
((
~
mask
)
.
sum
()
.
item
())
<
self
.
probability
)
mask
[
~
mask
]
=
(
torch
.
rand
((
~
mask
)
.
sum
()
.
item
())
<
self
.
ada_param
.
beta
)
next_data
=
next_data
[
mask
.
to
(
next_data
.
device
)]
next_data
=
next_data
[
mask
.
to
(
next_data
.
device
)]
self
.
submitted
=
self
.
submitted
+
1
self
.
submitted
=
self
.
submitted
+
1
return
next_data
return
next_data
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment