Commit cc8abec4 by zlj

add negative fix weight

parent a225e572
import matplotlib.pyplot as plt
import numpy as np
import torch
# 读取文件内容
ssim_values = [0, 0.1, 0.2, 0.3, 0.4, 2] # 假设这是你的 ssim 参数值
probability_values = [1,0.1,0.05,0.01,0]
data_values = ['WIKI','LASTFM','WikiTalk','DGraphFin'] # 存储从文件中读取的数据
seed = ['13357','12347','63377','53473',' 54763']
partition = 'ours_shared'
# 从文件中读取数据,假设数据存储在文件 data.txt 中
#all/"$data"/"$partitions"-ours_shared-0.01-"$mem"-"$ssim"-"$sample".out
partitions=4
topk=0.01
mem='all_update'#'historical'
model='TGN'
for sd in seed :
for data in data_values:
ap_list = []
comm_list = []
for p in probability_values:
if data == 'WIKI' or data =='LASTFM':
model = 'TGN'
else:
model = 'TGN_large'
if p == 1:
file = 'all_{}/{}/{}/{}-{}-{}-{}-recent.out'.format(sd,data,model,partitions,partition,topk,mem)
else:
file = 'all_{}/{}/{}/{}-{}-{}-{}-boundery_recent_decay-{}.out'.format(sd,data,model,partitions,partition,topk,mem,p)
prefix = "val ap:"
max_val_ap = 0
test_ap = 0
with open(file, 'r') as file:
for line in file:
if line.find(prefix)!=-1:
pos = line.find(prefix)+len(prefix)
posr = line.find(' ',pos)
#print(line[pos:posr])
val_ap = float(line[pos:posr])
pos = line.find("test ap ")+len("test ap ")
posr = line.find(' ',pos)
#print(line[pos:posr])
_test_ap = float(line[pos:posr])
if(val_ap>max_val_ap):
max_val_ap = val_ap
test_ap = _test_ap
ap_list.append(test_ap)
print('data {} seed {} ap: {}'.format(data,sd,ap_list))
# prefix = 'best test AP:'
# cnt = 0
# sum = 0
# with open(file, 'r') as file:
# for line in file:
# if line.startswith(prefix):
# ap = float(line.lstrip(prefix).split(' ')[0])
# pos = line.find('remote node number tensor')
# if(pos!=-1):
# posr = line.find(']',pos+2+len('remote node number tensor'),)
# #print(line,line[pos+2+len('remote node number tensor'):posr])
# comm = int(line[pos+2+len('remote node number tensor'):posr])
# #print()
# sum = sum+comm
# cnt = cnt+1
# #print(comm)
# ap_list.append(ap)
# comm_list.append(sum/cnt*4)
# # 绘制柱状图
# print('{} TestAP={}\n'.format(data,ap_list))
# bar_width = 0.4
# #shared comm tensor
# # 设置柱状图的位置
# bars = range(len(probability_values))
# # 绘制柱状图
# plt.bar([b for b in bars], ap_list, width=bar_width)
# # 绘制柱状图
# plt.ylim([0.9,1])
# plt.xticks([b for b in bars], probability_values)
# plt.xlabel('probability')
# plt.ylabel('Test AP')
# plt.title('{}({} partitions)'.format(data,partitions))
# plt.savefig('boundary_AP_{}_{}_{}.png'.format(data,partitions,model))
# plt.clf()
# print(comm_list)
# plt.bar([b for b in bars], comm_list, width=bar_width)
# # 绘制柱状图
# plt.xticks([b for b in bars], probability_values)
# plt.xlabel('probability')
# plt.ylabel('Communication volume')
# plt.title('{}({} partitions)'.format(data,partitions))
# plt.savefig('boundary_comm_{}_{}_{}.png'.format(data,partitions,model))
# plt.clf()
# if partition == 'ours_shared':
# partition0 = 'ours'
# else:
# partition0=partition
# for p in probability_values:
# file = '{}/{}/test_{}_{}_{}_0_boundery_recent_uniform_{}_all_update_2.pt'.format(data,model,partition0,topk,partitions,float(p))
# val_ap = torch.tensor(torch.load(file))[:,0]
# epoch = torch.arange(val_ap.shape[0])
# #绘制曲线图
# plt.plot(epoch,val_ap, label='probability={}'.format(p))
# plt.xlabel('Epoch')
# plt.ylabel('Val AP')
# plt.title('{}({} partitions)'.format(data,partitions))
# # plt.grid(True)
# plt.legend()
# plt.savefig('{}_{}_{}_boundary_Convergence_rate.png'.format(data,partitions,model))
# plt.clf()
......@@ -14,7 +14,7 @@ probability_params=("0.1" "0" "0.05" "0.01")
sample_type_params=("boundery_recent_decay" "recent")
#sample_type_params=("recent" "boundery_recent_decay") #"boundery_recent_uniform")
#memory_type=("all_update" "p2p" "all_reduce" "historical" "local")
memory_type=( "all_update" "historical" "local")
memory_type=( "all_update")
#memory_type=("local" "all_update" "historical" "all_reduce")
shared_memory_ssim=("0.3" "0.7")
#data_param=("WIKI" "REDDIT" "LASTFM" "WikiTalk")
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment